Patrick B. answered 03/14/21
Math and computer tutor/teacher
First you need the base 2 table like this:
2^7 = 128
2^6 = 64
2^5 = 32
2^4 = 16
2^3 = 8
2^2 = 4
2^1 = 2 <-- 2nd to last least significant bit
2^0 = 1 <-- least significant bit
DECIMAL POINT
2^(-1) = 1/2 = 0.5 <-- 1st decimal
2^(-2) = 1/4 = 0.25 <-- 2nd decimal
2^(-3) = 1/8 = 0.125 <-- 3rd decimal
2^(-4) = 1/16 = 0.0625
2^(-5) = 1/32 = 0.03125
So the 48= 32+16 which is binary 00110000
Now for the decimal part that you are interested in...
1/2 is too big, so the first bit past the decimal is zero
Exponent -2: 0.365 - 0.25 = 0.115
Exponent -3: 0.125 is too big, so this bit is zero
Exponent -4: 0.115 - 0.0625 = 0.0525
Exponent -5: 0.03125 - 0.0525 = 0.02125
Exponent -6: 1/64 = 0.015625, so 0.02125-0.015625 = 0.005625
Exponent -7: 1/128 = 0.0078125 is to big so that bit is zero
Exponent -8: 1/256 = 0.00390625, so 0.005625 - 0.00390625=0.00171875
<next byte>
Exponent -9: 1/512 = 0.001953125 is too big , so that bit is zero
Exponent -10: 1/1024 = 0009765625, so 0.00171875-0.0009765625=
0.0007421875
Exponent -11: 1/2048 =.00048828125, so 0.0007421875-0.0007421875=
0.00025390625
Exponent -12: 1/4096 = 0.000244140625, so 0.00025390625- 0.000244140625=
0.000009765625
Exponent -13: 1/8192 = 0.0001220703125, is too big, so that bit is zero
Exponent -14: 1/16384 = 0.00006103515625 is too big, so that bit is zero
Exponent -15: 1/32786 = 0.00003050082352223510034770938815348
so 0.000009765625 - 0.00003050082352223510034770938815348=
0.00002073519852223510034770938815348
Exponent -16:
1/65572 = 0.00001525041176111755017385469407674,
so 0.00002073519852223510034770938815348-0.00001525041176111755017385469407674=
= 0.0000054847867611175501738546940732599
Hopefully by now you see the pattern...
the bit string is then
00110000.0101110101110011.....
VADIM B.
google IBM yellow card - it will help03/16/21
Krugen K.
Thank you very much, I fully understand now.03/15/21