h(x) = f(lnx) + ln(g(x))
h'(x) = f'(lnx)(lnx)' + g'(x) / g(x) = f'(lnx) / x + g'(x) / g(x)
So, h'(1) = f'(ln1) / 1 + g'(1) / g(1) = f'(0) + (-3) / 3 = 9 - 1 = 8
h(x) = f(lnx) + ln(g(x))
h'(x) = f'(lnx)(lnx)' + g'(x) / g(x) = f'(lnx) / x + g'(x) / g(x)
So, h'(1) = f'(ln1) / 1 + g'(1) / g(1) = f'(0) + (-3) / 3 = 9 - 1 = 8
Yefim S. answered 02/24/23
Math Tutor with Experience
H'(x) = f'(ln(x) + ln(g(x)))·(1/x + g'(x)/g(x)).
H'(1) = f'(ln1 + ln(g(1)))·(1/1 + g'(1)/g(1)) = f'(ln3)(1 - 3/3) = f'(ln3)·0 = 0
Get a free answer to a quick problem.
Most questions answered within 4 hours.
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.