Suppose the position vector for a particle is given as a function of time by r (t) = x(t)î + y(t)ĵ, with x(t) = at + b and y(t) = ct2 + d, where a = 2.00 m/s, b = 1.50 m, c = 0.129 m/s2, and d = 1.20 m.
(a) Calculate the average velocity during the time interval from t = 1.90 s to t = 4.25 s.
:v = 2.15_____m/s
b) Determine the velocity at t = 1.90 s.
v = _2.059________m/s
r(t) = (at + b)i + ( ct^2 + d ) j = ( 2t + 1.5)i + ( 0.129t^2 + 1.20)j
ave speed = [r(4.25) - r(1.90)]/ (4.25 - 1.90 )
r( 4.25 ) = ( 2*4.25 + 1.5)i + ( 0.129 * 4.25^2 + 1.20 ) = 10i + 3.53j
r( 1.90 ) = ( 2*1.90 + 1.5 )i + ( 0.129 * 1.90^2 + 1.20) = 5.3i + 1.67j
ave speed = [r(4.25) - r(1.90)]/ (4.25 - 1.90 ) = [ 10i + 3.53j - 5.3i -1.67j] / ( 2.35) ------->
[4.7i + 1.86j]/ 2.35 = 2i + 0.79j
|v| = √( 2^2 + 0.79^2 ) = 2.15
--------------------------------------------------------------------------------------------------------
v(t) = lim ( Δ r ) / d t ----------> [( 2t + 1.5)i + ( 0.129t^2 + 1.20)j] / dt ------> v'(t) = 2i + 0.258tj
v( 1.90) = 2i + 0.258(1.90)j
= 2i + 0.49j
|v| = √( 2^2 + 0.49^2)
= 2.059
I hope it is useful,
Minoo√