
Patrick B. answered 03/30/21
Math and computer tutor/teacher
Here's part A:
Proves -------> If 3 divides 2N^2+1 then 3 does NOT divide N.
Proof by contradiction:
Suppose 3 Divides N. Then N = 3k for some integer k.
So 2N^2+1 = 2(3k)^2+1 = 18k^2 + 1
Then 3 does not divide 2N^2+1, which is a contradiction.
Proves:
<-------
If 3 does not divide N then 3 divides 2n^2+1.
Since 3 does not divide N, then N = 3k+1 or N = 3k+2
If N = 3k+1 then
2N^2+1 = 2(3k+1)^2+1 = 2(9k^2+6k+1)+1
= 18k^2 + 12k + 3
= 3(6k^2+2k+1)
so 3 divides 2 N^2+1
If n = 3k+2 then
2N^2+1 = 2(3k+2)^2 + 1 = 2(9k^2+12k+4)+1
= 18k^2+24k+9
= 3 (6k^2+8k+3)
so 3 divides 2N^2+1
=========================================
Proves
----->
if a^2<=1 then -1 <= a <= 1
Suppose a<-1 or a>1.
If a < -1 Then a^2>1 which is a contradiction.
If a>1 then a^2 > 1 which is a contradiction.
Therefore -1 <= a <= 1
Proves
<------
if -1 <= a <= 1 then a^2<=1
Suppose a^2>1
Then a^2-1 > 0
(a+1)(a-1)>0
Then either a+1>0 and a-1>0 OR a+1<0 and a-1<0
So then either a>-1 and a>1 or a<-1 and a<1
Therefore a>1 OR a<-1 which is a contradiction