Based on the given information let:
- Day Shift be Group 1,
- Night Shift be Group 2, because of the 2 shifts.
- G1 = 188 / 200 = 0.94 → Day shift
- G2 = 180 / 200 = 0.90 → Night shift
We can calculate the difference in sample proportions, which will be:
- G1 - G2 = 0.94 - 0.90 = 0.04
Part A: 96% Confidence interval for G1 - G2
Step 1: Standard Error
- SE = √(G1(1 - G1)) / n1 + (G2(1 - G2)) / n2
- SE = √(0.94(0.06)) / 200 + (0.90(0.10))/200
- SE = √0.000282 + 0.00045
- SE = √0.000732 ≈ 0.0271
Step 2: Critical Value
- For a 96% confidence level: z* ≈ 2.05
Step 3: Margin of error
- ME = 2.05 (0.0271) ≈ 0.0556
Step 4: Confidence interval
- 0.04 ± 0.0556
→ (-0.0156, 0.0956)
That means that the 96% confidence interval would be: (-0.016, 0.096)
Part B: is the difference significantlly different from 0? α
- No, because the confidence interval contains 0. That meansthat the difference of - is a plausible value for G1-G2