
David U. answered 08/20/20
Scientist, Math PhD and Physics PhD, tutoring students/professionals
LHS: s2X(s)-sx(0)-x'(0) + 4X(s) = (s2+4)X(s)
RHS: L{tu(t-2)+δ(t-1)} = L{(t-2)u(t-2)+2u(t-2)} + L{δ(t-1)}=[1/s2+2/s]exp(-2s) + exp(-s)
Solving for X(s) we get X(s) = exp(-2s)[1/(s2(s2+4))+2/(s(s2+4))] + exp(-s)/(s2+4).
For the inverse first note that 1/(s2(s2+4)) =1/(4s2) - 1/(4(s2+4)) and 2/(s(s2+4))=1/(2s) - s/(2(s2+4)). Using basic formulas L-1{exp(-as)L{f}(s)}=u(t-a)f(t-a), L-1{1/s2}=t, L-1{1/(s2+4}=sin(2t)/2, L-1{s/(s2+4}=cos(2t), we get the solution
x(t) = L-1{X(s)} = u(t - 2)[t/4 - cos(2t - 4)/2 - sin(2t - 4)/8] + u(t - 1)sin(2t - 2)/2
Remark 1: to check that the answer is correct just take the distributional derivatives
Remark 2: if you are good with complex analysis then, instead of partial fraction decomposition, it is simpler just to compute residues.