cos(pi/2 - x)[sec(pi/2 - x)-cos(pi/2 - x)]
Let's say: θ = pi/2 - x
Then: cos(θ)[sec(θ)-cos(θ)]
Now distribute cos(θ) across sec(θ)-cos(θ):
cos(θ)*sec(θ)-cos(θ)*cos(θ)
Using the Reciprocal Identity: sec(θ) = 1/ cos(θ)
cos(θ)*sec(θ)-cos(θ)*cos(θ)
becomes: 1- cos2(θ)
Among the Fundamental Identities is: sin2(θ) +cos2(θ)=1
Thus 1- cos2(θ) = sin2(θ).
Replace θ with pi/2 - x:
sin2(pi/2 - x)
Two options here:
First: sine and cosine are 90 degrees out of phase which corresponds to pi/2;
we can use the Cofunction Formula: sin(pi/2 - θ) = cos(θ)
which means: sin2(pi/2 - x) = cos2( x)
Second:
Using the Difference of Two Angle Identities: sin(α-β)=sin(α)cos(β)-cos(α)sin(β)
sin(pi/2-x)=sin(pi/2)cos(x)-cos(pi/2)sin(x)
Since: sin(pi/2) = 1 and cos(pi/2) =0
sin(pi/2)cos(x)-cos(pi/2)sin(x) = 1*cos(x)-0*sin(x) = cos(x)
==>Which concurs with the Cofunction Formula in the first option.
Thus again means: sin2(pi/2 - x) = cos2( x)