
Michael T. answered 10/28/19
Knowledgable Math and Science Tutor
cos(x)-tan2(x)=1
1: add tan2(x) on both sides, cos(x)-tan2(x)+tan2(x) = 1+tan2(x)
2: trigonometric identity, cos(x) = 1+tan2(x) = sec2(x)
3: divide by sec2(x) on both sides, cos(x)/sec2(x) = sec2(x)/sec2(x) = 1
4: sec(x)=1/cos(x), cos(x)/sec2(x) = cos(x)/(1/cos2(x)) = cos(x)(cos2(x)) = cos3(x)=1
5: cube root both sides, (cos3(x))1/3 = (1)1/3 => cos(x) = 1
6: solve for x, cos(x) = 1 when x=0+/-2pi(n), where n is an integer