Al P. answered • 12/07/17

Online Mathematics tutor

Let u=(x)

^{½}and v=x^{2}+ln(1+x) then use the quotient rule:(many steps later):

f'(x) = [(x+1)ln(x+1) - x(3x

^{2}+3x+2) ] / (2x^{½}*[(x+1)(x^{2}+ln(x+1)]^{2})On convergence as x—>∞:

The numerator —>∞

The denominator —>∞

So you can apply L'Hospital's (take derivative of numerator and denominator separately):

Lim(x—>∞) { ½x

^{-(½}^{)}/ (2x + 1/(1+x)) } = 0Alexander L.

Thank you Mr. Al! Even this information is helpful to me

Report

12/07/17

Al P.

12/07/17