For a function y=f(x) and a positive constant c:
- y=f(x+c) shifts the graph of f(x) c units to the left, f(x-c) shifts f(x) c units to the right
- y = c*f(x) stretches the graph vertically; y = (1/c)f(x) compresses the graph vertically
- y = f(x) + c shifts the graph up c units; y = f(x) - c shifts it down c units.
For your problem, f(x) = |x|, so:
f(x+c) = |x+c|
(1/c)*f(x) = (1/c)*|x|
f(x)+c = |x| + c