a. 25≤x2 25-x2≤0
(5-x)(5+x)≤0
(5-x)(5+x)=0 when x = 5 or -5
If x<-5, then (5-x)(5+x)<0
If -5<x<5, then (5-x)(5+x)>0
If x>5, then (5-x)(5+x)<0
Solution: (-∞,-5]∪[5,∞)
-------------------------------------------------------------------------------
b. (2x-3)/(x+1)≥1
(2x-3)/(x+1) - 1 ≥ 0
[(2x-3)-(x+1)]/(x+1) ≥ 0
(x-4)/(x+1) ≥ 0
Numerator=0 when x=4 Denominator=0 when x=-1
If x<-1, then x-4<0 and x+1<0. So (x-4)/(x+1) > 0.
If -1<x<4, then x-4<0 and x+1>0. So, (x-4)/(x+1) < 0.
If x>4, then x-4>0 and x+1>0. So, (x-4)/(x+1) > 0.
Solution set: (-∞, -1) ∪ [4,∞)