
William W. answered 03/11/24
Top Pre-Calc Tutor
f(x) = xsin(x) • (x-1)20 • (3x2 + 2)24
y = xsin(x) • (x-1)20 • (3x2 + 2)24
ln(y) = ln(xsin(x) • (x-1)20 • (3x2 + 2)24)
ln(y) = ln(xsin(x)) + ln((x-1)20) + ln((3x2 + 2)24)
ln(y) = (sin(x))ln(x) + 20ln(x-1) + 24ln(3x2 + 2)
Take the derivative implicitly:
(ln(y))' = [(sin(x))ln(x)]' + (20ln(x-1))' + (24ln(3x2 + 2))'
(1/y)•y' = [cos(x)ln(x) + sin(x)(1/x)] + 20/(x - 1) + 24/(3x2 + 2)•(6x)
(1/y)•y' = cos(x)ln(x) + sin(x)/x + 20/(x - 1) + 144x/(3x2 + 2)
y' = y[cos(x)ln(x) + sin(x)/x + 20/(x - 1) + 144x/(3x2 + 2)]
If you want this only in terms of "x" you can replace the "y" with "xsin(x) • (x-1)20 • (3x2 + 2)24"
Josh D.
thank you so much!!03/12/24