cos(3x)
= cos(2x+x)
= cos(2x)cos(x) - sin(2x)sin(x) <-- Recall cos(a+b) = cos(a)cos(b) - sin(a)sin(b) by Difference Formula
= [cos2(x)-sin2(x)]cos(x) - [2cos(x)sin(x)]sin(x) <-- cos(2x) = cos2(x)-sin2(x) and sin(2x) = 2cos(x)sin(x) by Double-Angle Identities
= cos3(x) - sin2(x)cos(x) - 2cos(x)sin2(x)
= cos3(x) - 3cos(x)sin2(x)
= cos3(x) - 3cos(x)[1-cos2(x)] <-- sin2(x) = 1-cos2(x) by the Pythagorean Identity
= cos3(x) - 3cos(x) + cos3(x)
= 4cos3(x) - 3cos(x)
Hope this helped!