The electric field from a point charge will have a magnitude |keQ/d2| in a direction towards the charge if Q<0 and away from the charge if Q>0
The directions are facilitated as we are looking at vectors that aim towards and away from the origin (coordinates give components)
Easiest is the charge at .8,0 which creates a field E1 = ke(2 x 10-9 C)/(.8 m)2 in the + x direction
The other charge at (.8,.6) creates a field E2 = ke(6 x 10-9 C)/(1m)2 in the (-.8,-.6) direction (the vector is already a unit vector) E2x = -.8E2 and E2y = -.6E2
Now just add the x components and y components separately (To find ETotal,x and ETotal,y and combine them using the usual transform:
|ET| = sqrt(ET,x2 + ETy2) and θ = arctan(ETy/ETx) (+/- 180 if ETx <0)