Arthur D. answered 03/12/15
Tutor
5.0
(267)
Forty Year Educator: Classroom, Summer School, Substitute, Tutor
A) choose 3 people from a group of 8 people
8!/3!(8-3)!=8!/3!5!=8*7*6/3*2=8*7=56 ways you can choose 3 people from a group of 8 people
B) from 8 people 1 can be President
from 7 people 1 can be Vice-President
from 6 people 1 can be Secretary
8*7*6=336 ways to choose a P, a VP, and a S
look at it this way, you have 56 groups of 3 people
call the people A, B, and C
you want President, Vice-P, and Secretary
ABC can be P, VP, and S
ACB can be P, VP, and S
BAC can be...
BCA
CAB
CBA
in each group of 3 people you can arrange them in 6 different ways; choose from 3 for P, 2 for VP, and 1 for S
3*2*1=6
there are 56 groups and each group can be arranged in 6 different ways
56*6=336 ways you can choose a P, a VP, and a S