
Yefim S. answered 08/25/21
Math Tutor with Experience
L(t)=⟨4−3t,17+4t⟩.
- Intersect x-axis: y = 0; 17 + 4t = 0; t = -17/4; x = 4 + 51/4= 67/4; (67/4, 0) is x-intercept.
- Intersect y-axis: x = 0; 4 - 3t = 0; t = 4/3; y = 17 + 16/3 = 67/3; (0, 67/3) is y-intercept.
- Intersection with parabola: 17 + 4t = (4 - 3t)2; 9t2 - 28t - 1 = 0; t = (14 ± √205)/9;
t1 = (14 + √205)/9, point ((- 2 - √205)/3, (167 + √205)/9))
t2 = (14 - √205)/9, point ((-2 + √205)/3, (167 - √205)/9))