Ashley S. answered 02/27/15
Tutor
5.0
(58)
Experienced and Enthusiastic Tutor
Consider the following identities:
sin(2x) = 2sinxcosx (double angle)
and
cos(2x) = 2cos2x-1 (double angle)
and
cos(a+b) = cos(a)cos(b) - sin(a)sin(b) (sum/difference)
and sin2x = 1-cos2x (Pythagorean)
NOW:
First, replace "3x" with "3x+x"
1) sin(2x) - cos(2x + x)
Utilize the sum formula for cos
2) sin (2x) - cos(2x)cos(x) - sin(2x)sin(x)
Utilize the double angle formulas for both of the sin(2x) and the cos(2x)
3) 2sinxcosx - (2cos2x-1)(cosx) - (2sinxcosx)(sinx)
Simplify a bit by removing the cosx
4) cosx [ 2sinx - (2cos2x-1) - 2sin2x ]
Distribute the minus sign in front of (2cos2x-1)
5) cosx [ 2sinx - 2cos2x + 1- 2sin2x]
Utilize the Pythagorean identity to replace sin2x
6) cosx [ 2sinx - 2cos2x + 1 - 2(1-cos2x) ]
Distribute the -2 in front of (1-cos2x)
7) cosx [ 2sinx - 2cos2x + 1 - 2 + 2cos2x]
Combine like terms (+1-2 = -1 and -2cos2x+2cos2x=0)
8) cosx [ 2sinx - 1]
There you have it.