denominator of left side is
m/R^2 + v cos T=
(m + v cos T * R^2)/R^2
left side is:
R^2 dR/(m + v cos T * R^2) = r dT / (-v sin T)
R dR/ (m + v cos T * R^2) = dT/ (-v sin T)
R dR/dt = (m + v cos T * R^2)/(-v sin T)
R dR/dt = (-m/v) csc T - cot T * R^2
cotT R^2 + R dr/dt + (m/v) csc T = 0
or
[cotT R^2 + (m/v) csc T ]/-R = dr/dt
=cot T*R - (m/v) csc T / R
you can now use your favorite Runge Kutta method
for this first order ODE
Ashley P.
We need to show that the solution equals to ; v*(r^2)*((sin(theta))^2) - 2m*cos(theta) = k, where k k is a constant11/25/20
Ashley P.
Could you please explain how to derive the solution from that method? Thank you!11/25/20