Janelle S. answered • 09/22/20

Penn State Grad for ME, Math & Test Prep Tutoring (10+ yrs experience)

Given: r = 21 m

v = 7.5 m/s

m = 98 kg

μ_{s} = 0.37

centripetal force = F_{c} = mv^{2} / r = (98 kg) (7.5 m/s)^{2} / (21 m) = 262.5 N

normal force = F_{N} = mg = (98 kg) (9.8 m/s^{2}) = 960.4 N

friction force = F_{f} = μ_{s} (F_{N) = }μ_{s} mg = .37 (98 kg) (9.8 m/s^{2}) = 355.348 N

F_{x net} = F_{f} - F_{c} = 355.348 N - 262.5 N = 92.848 N

F_{y net} = F_{N} = 960.4 N

F_{total} = √[(F_{x net})^{2} + (F_{y net})^{2}] = √[(92.848 N)^{2} + (960.4 N)^{2}] = 964.878 N