
Yefim S. answered 09/12/20
Math Tutor with Experience
a) s2F(s) - s - 2 + sF(s) - 1 + 3F(s) = 0, F(s)(s2 + s + 3) = s + 3,·F(s) = (s + 3)/(s2 + s + 3) =(s + 1/2)/[(s + 1/2)2+ 11/4] + 5/2/[(s+ 1/2)2 + 11/4}
Now inverse Laplace transform give us: y = e-1/2t[cos(111/2t/2) + 5/111/2sin(111/2t/2)]
b) s2F(s) - s - 2 + sF(s) - 1 + 3F(s) = 1/(s2 + 1); F(s)(s2 + s+ 3) = 1/(s2 + 1) + s + 3
So F(s) = (s+3)/(s2+ s+ 3) + 1/[(s2 + s + 3)(s2 + 1)]
We ned decomposition only for 1/[(s2 + s + 3)(s2 + 1)] = (as + b)/(s2 + s + 3) + (cs + d)/(s2 + 1);
a = 0, c = 0, b = -1/2, d = 1/2.
We get F(s) = (s + 3)/(s2 + s + 3) - 1/2/[(s + 1/2)2 + 11/4] + 1/2/(s2 + 1)
So, y = e-1/2t[cos(111/2t/2) + 5/111/2sin(111/2t/2)] + 1/2sint - 1/111/2e-1/2tsin(111/2t)