
Yefim S. answered 07/20/20
Math Tutor with Experience
We revrite right side : x''(t) - x(t) = (t - 2)u2(t) + (3 - t)u5(t) = (t - 2)u2(t) - ((t - 5) + 2))u5(t).
Then laplace Transform give us: s2F(s) - F(s) = e-2s·1/s2 - e-5s(1/s2 + 2/s).
From here F(s) = e-2s(1/(s2(s2 - 1)) - e-5s((2s + 1)/(s2(s2 - 1)). After performing partial fraction decomposition we get:
F(s) = e-2s(- 1/s2 + 1/2·1/(s - 1) - 1/2·1/(s + 1)) - e-5s(- 1/s2 - 2/s - 3/2·1/(s - 1) + 1/2·1/(s + 1)). Then inverse Laplace.
x(t) = u2(t)[- (t - 2) + 1/2et - 2 - 1/2e- t + 2] + u5(t)[- (t - 5) - 2 - 3/2et - 5 + 1/2e- t + 5]
x(t) = u2(t)[- t + 2 - 1/2et - 2 1/2e- t + 2] + u5(t)[- t + 3 - 3/2et - 5 + 1/2e- t + 5]