
Yefim S. answered 01/07/20
Math Tutor with Experience
Let S = 1/13 + 1/ 15 + 1/17 + ... + 1/61 + 1/63.
Denominators create arithmetic sequence with a1 = 13, d = 2 and an = 63. Then 63 = 13 + 2(n- 1), n = 26.
Then an = 2n + 11. If we combine eqwuidistant from the ends we get S = ∑113(1/(2n+11)+1/(65 - 2n)) = ∑
∑113(76/(11+2n)(65-2n)) = ∑11376/(- 4n2 + 108n + 715).
Consider function f(x) = 76/(- 4x2 + 108x + 715), derivative f'(x) = -76(- 8x + 108)/(-4x2+108x +715)2 < 0,
-8x + 108 > 0, x < 13.5. We now prove that 76/(-4n2 + 108n + 715) decriasing for n = 1, 2, 3, ..., 13.
This means that 13·76/(2·13 + 11)(65-2·13) < S < 13·76/((2·1 + 11)(65 - 2·1)) or
13·76/(37·39) < S < 13·76/(13·63) or 1/3 < 76/111 < S < 76/63 < 4/3.