Arthur D. answered 11/10/19
Forty Year Educator: Classroom, Summer School, Substitute, Tutor
draw a diagram
x=width
y=left length and right length
x/2=radius of the semicircle
first find the perimeter
P=x+y+y+(1/2)C
P=x+2y+(1/2)(2∏r) but r=x/2
P=x+2y+(1/2)(2∏[x/2])
P=x+2y+(∏/2)x
P=2y+x(1+[∏/2])
you have 24 feet
24=2y+x(1+∏/2)
solve for y
2y=24-x(1+∏/2)
y=12-(x/2)(1+∏/2)
y=12-x/2--∏x/4
y=12-x([1/2]+[∏/4])
y=12-x([2+∏]/4)
now find the area (of the rectangle and half of the circle)
A=xy+(1/2)(∏r^2)
remember we just found the value of y and r=x/2
A=x(12-x[(2+∏)/4])+(1/2)∏(x/2)^2
A=x(12-x[(2+∏)/4])+(1/2)∏(x^2/4)
A=12x-x^2[(2+∏)/4]+(∏/8)x^2
A=12x-x^2([[2+∏]/4]-[∏/8])
A=12x-x^2([[4+2∏]/8]-∏/8)
A=12x-x^2([4+∏]/8)
use -b/2a for x, the "maximizing" point
-12/(-[4+∏]/4)=
48/(4+∏)=x
you now have a value for x and a value for y
lastly find the value of half of the circumference, C
the radius r=x/2
x/2=(48/[4+∏])/2
r=24/(4+∏)
(1/2)C=(1/2)(2)(∏)(24/[4+∏])
(1/2)C=24∏/(4+∏)
now you have all the dimensions: x, y, and (1/2)C
if you add these four values together, x+y+y+(1/2)C, you will see that you get 24 !