Arthur D. answered 11/05/19
Forty Year Educator: Classroom, Summer School, Substitute, Tutor
f(x)=x^2+dx+3d has its vertex on the x-axis which means that in (h,k), the vertex, k=0
y=x^2+dx +3d
complete the square
(d/2)^2=d^2/4
y=x^2+dx+d^2/4+3d-d^2/4
since k=0, 3d-d^2/4=0
3d-d^2/4=0
12d-d^2=0
d^2-12d=0
d(d-12)=0
d=0 or d=12
if d=0 you get y=x^2
if d=12 you get....
y=x^2+dx+3d
complete the square
y=x^2+12x +36
y=x^2+12x+36 +36-36
y=(x+6)^2
in either case, k=0
y=x^2+3dx-d^2+1
follow the same reasoning to get...
y=x^2+3dx -d^2+1
y=x^2+3dx+9d^2/4 -d^2+1-9d^2/4
again, k=0, so.....
-d^2+1-9d^2/4=0
simplify
(-13/4)d^2+1=0
(13/4)d^2=1
d^2=4/13
d=±√(4/13)
d=±√4/√13
d=±2/√13
d=±2√13/13
so d=2√13/13 or d=-2√13/13
check: -d^2+1-(9/4)d^2
-4/13+1-(9/4)(4/13)
-4/13-9/13+1=0