
Steve S. answered 02/23/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
e^(-9x) = e^(x^2) + 20
I don’t know how to solve this exactly.
However, a numerical approximate solution is easily done on GeoGebra (or a graphing calculator).
Graph f(x) = e^(x^2) + 20 and g(x) = e^(-9x) and find their intersection point, A.
Or, multiply both sides by e^(9x):
0 = e^(x^2 + 9x) + 20e^(9x) - 1
and graph h(x) = e^(x^2 + 9x) + 20e^(9x) - 1 and find it’s zero.
Here’s my GeoGebra sketch:
http://www.wyzant.com/resources/files/262819/hard_exponentials_equation
And the answer is: x ≈ -0.338922463539581
check:
e^(-9(-0.338922463539581)) =? e^((-0.338922463539581)^2) + 20
e^(3.05030217185623) =? e^(0.11486843629174) + 20
21.12172584945494 ≈ 1.121725849451126 + 20 √
I don’t know how to solve this exactly.
However, a numerical approximate solution is easily done on GeoGebra (or a graphing calculator).
Graph f(x) = e^(x^2) + 20 and g(x) = e^(-9x) and find their intersection point, A.
Or, multiply both sides by e^(9x):
0 = e^(x^2 + 9x) + 20e^(9x) - 1
and graph h(x) = e^(x^2 + 9x) + 20e^(9x) - 1 and find it’s zero.
Here’s my GeoGebra sketch:
http://www.wyzant.com/resources/files/262819/hard_exponentials_equation
And the answer is: x ≈ -0.338922463539581
check:
e^(-9(-0.338922463539581)) =? e^((-0.338922463539581)^2) + 20
e^(3.05030217185623) =? e^(0.11486843629174) + 20
21.12172584945494 ≈ 1.121725849451126 + 20 √
Steve S.
ln e-9x = lnex^2 + ln20"
02/23/14