∫[(4-x2)(3+x)/(2x5)]dx
= ∫[(-3x2+4x-x3+12)/(2x5)]dx (divide each term of the numerator by the denominator)
= ∫[ (-3/2)x-3 +2x-4 - (1/2)x-2 + 6x-5]dx
= (-3/2)(-1/2)x-2 + 2(-1/3)x-3 - (1/2)(-1)x-1 + 6(-1/4)x-4 + C
= 3/(4x2) - 2/(3x3) + 1/(2x) - 3/(2x4) + C