If y = ux, then the differential equation can be rewritten as:
u + x(du/dx) = u - (1/u)eu^2
So, x(du/dx) = -(1/u)eu^2
Separating variables, we have -ue-u^2du = (1/x)dx
-∫ue-u^2du = ∫(1/x)dx
Let w = -u2, then dw = -2udu. So, -udu = (1/2)dw.
Thus, (1/2)∫ewdw = lnlxl+C1
ew = ln(x2) + C (C = 2C1)
Since w = -u2, e-u^2 = ln(x2) + C
But, u = y/x gives us e-(y^2/x^2) = ln(x2) + C