Use quadratic formula to find all solutions in the interval [0,2pi):
tan^2(x) - 6 tan(x) + 4=0
tan(x) = (--6 ± sqrt((-6)^2 - 4(1)(4)))/(2(1))
= 3 ± sqrt( (2*3)^2 - 4(2^2) ) / (sqrt(2^2))
= 3 ± sqrt( (3)^2 - 4 )
= 3 ± sqrt( 5 ) ≈ 0.76393202250021 or 5.23606797749979
We can use calculator's tan^(-1)(x) function to find 1st quadrant solutions and add pi to both to get 3rd quadrant solutions (in radians):
x ≈ tan^(-1)(0.76393202250021) ≈ 0.652358139784368 or 3.79395079337416
x ≈ tan^(-1)(5.23606797749979) ≈ 1.382085796011335 or 4.52367844960113
pi * 0.5 sec / (60 sec/min) / (60 min/deg) / 180° ≈ 0.00000242406841 radians
So if we want our answers accurate to the nearest minute of arc we should round to the 5th decimal place:
x ≈ 0.65236 or 1.38209 or 3.79395 or 4.52368 radians
Parviz F.
01/05/14