
David W. answered 04/22/16
Tutor
4.7
(90)
Experienced Prof
The problem gives two points: (-5,6) and (3,-10).
In the Cartesian Coordinate System, we plot points (x,y) on two axes.
Two points determine a line. When you connect them -- and keep on going -- that line has an equation that the problem asks you to find.
The slope-intercept form of the equation a line looks like: y=mx + b
where m is the slope
and the point (0,b) is the y-intercept [the point where the line crosses the y-axis -- at x=0]
Given two points (x1,y1) and (x2,y2) the equation of the line is:
y - y1 = ( (y2 - y1) / (x2 - x1) ) (x - x1)
y - 6 = ( (-10 - 6)/(3 -(-5)) ) (x - (-5))
y - 6 = ( (-16)/(8) ) (x + 5)
y - 6 = -2 (x+5)
y - 6 = -2x -10
y = -2x -4
Check to see whether both points are on the line (that is, they both satisfy the equation):
Is 6 = -2(-5) -4 ?
6 = 10 - 4 ?
6 = 6 ?yes
Is -10 = -2(3) - 4 ?
-10 = -6 - 4 ?
-10 = -10 ?yes