Roman C. answered 10/21/15
Tutor
5.0
(846)
Masters of Education Graduate with Mathematics Expertise
Solution 1 (factoring):
Note that xn - 1 = (x - 1)(xn-1 + xn-2 + ... + x + 1).
limx→1 (xm - 1)/(xn - 1)
= limx→1 (xm-1 + xm-2 + ... + x + 1)/(xn-1 + xn-2 + ... + x + 1)
= (1m-1 + 1m-2 + ... + 11 + 10)/(1n-1 + 1n-2 + ... + 11 + 10)
= m/n
Solution 2 (L'Hopital's Rule):
The limit has the 0/0 form so.
limx→1 (xm - 1)/(xn - 1)
= lim x→1 (mxm-1)/(nxn-1)
= (m·1m-1)/(n·1n-1)
= m/n