Assuming that f(x) has real coefficients, complex roots occur in conjugate pairs. So, the roots of f(x) are 7, -i, i, -9+i, -9-i.
f(x) = (x-7)[x-i][x-(-i)][x-(-9+i)][x-(-9-i)]
= (x-7)(x-i)(x+i)[(x+9)-i][(x+9)+i]
= (x-7)(x2-i2)[(x+9)2-i2]
= (x-7)(x2+1)(x2+18x+81+1)
= (x-7)(x2+1)(x2+18x+82)
= (x-7)(x4+18x3+82x2+x2+18x+82)
= (x-7)(x4+18x3+83x2+18x+82)
= x5+18x4+83x3+18x2+82x-7x4-126x3-581x2-126x-574
= x5+11x4-43x3-563x2-44x-574