To make the number odd, we have one of {0,1,2,3,4,5,6,7,8,9} followed by one of {0,1,2,3,4,5,6,7,8,9} followed by one of {1,3,5,7,9}. Now, if a leading 0 is not allowed, then it should be removed from the first set. However, my briefcase lock has 3 dials, so I'll allow 0 (you should check; the answer could be 360-40=320).
Now, you disallow repetition of digits. You have formulas for doing that (and other tutors might use them). Still keep the two groups (two of all digits) followed by one group (one more digit); this will determine allowed combinations. See if you can determine the pattern in the list below.
For fun, I wrote the following computer program:
N = 0
For I = 0 to 9
For J = 0 to 9
For K = 1 to 9 Step 2
If (I<>J) AND (I<>K) AND (I<>K) then N = N + 1; Output I,J,K
NEXT K
NEXT J
NEXT I
Output N
The value the computer found was 360 (see list below).
1 0 1 3
2 0 1 5
3 0 1 7
4 0 1 9
5 0 2 1
6 0 2 3
7 0 2 5
8 0 2 7
9 0 2 9
10 0 3 1
11 0 3 5
12 0 3 7
13 0 3 9
14 0 4 1
15 0 4 3
16 0 4 5
17 0 4 7
18 0 4 9
19 0 5 1
20 0 5 3
21 0 5 7
22 0 5 9
23 0 6 1
24 0 6 3
25 0 6 5
26 0 6 7
27 0 6 9
28 0 7 1
29 0 7 3
30 0 7 5
31 0 7 9
32 0 8 1
33 0 8 3
34 0 8 5
35 0 8 7
36 0 8 9
37 0 9 1
38 0 9 3
39 0 9 5
40 0 9 7
41 1 0 3
42 1 0 5
43 1 0 7
44 1 0 9
45 1 2 3
46 1 2 5
47 1 2 7
48 1 2 9
49 1 3 5
50 1 3 7
51 1 3 9
52 1 4 3
53 1 4 5
54 1 4 7
55 1 4 9
56 1 5 3
57 1 5 7
58 1 5 9
59 1 6 3
60 1 6 5
61 1 6 7
62 1 6 9
63 1 7 3
64 1 7 5
65 1 7 9
66 1 8 3
67 1 8 5
68 1 8 7
69 1 8 9
70 1 9 3
71 1 9 5
72 1 9 7
73 2 0 1
74 2 0 3
75 2 0 5
76 2 0 7
77 2 0 9
78 2 1 3
79 2 1 5
80 2 1 7
81 2 1 9
82 2 3 1
83 2 3 5
84 2 3 7
85 2 3 9
86 2 4 1
87 2 4 3
88 2 4 5
89 2 4 7
90 2 4 9
91 2 5 1
92 2 5 3
93 2 5 7
94 2 5 9
95 2 6 1
96 2 6 3
97 2 6 5
98 2 6 7
99 2 6 9
100 2 7 1
101 2 7 3
102 2 7 5
103 2 7 9
104 2 8 1
105 2 8 3
106 2 8 5
107 2 8 7
108 2 8 9
109 2 9 1
110 2 9 3
111 2 9 5
112 2 9 7
113 3 0 1
114 3 0 5
115 3 0 7
116 3 0 9
117 3 1 5
118 3 1 7
119 3 1 9
120 3 2 1
121 3 2 5
122 3 2 7
123 3 2 9
124 3 4 1
125 3 4 5
126 3 4 7
127 3 4 9
128 3 5 1
129 3 5 7
130 3 5 9
131 3 6 1
132 3 6 5
133 3 6 7
134 3 6 9
135 3 7 1
136 3 7 5
137 3 7 9
138 3 8 1
139 3 8 5
140 3 8 7
141 3 8 9
142 3 9 1
143 3 9 5
144 3 9 7
. . .