George C. answered 08/17/13
Humboldt State and Georgetown graduate
e^(-10s)/(s(s^2+3s+2))
Factor out e^(-10s) for partial fraction decomposition.
1/(s(s^2+3s+2)) = 1/ s(s+1)(s+2) = A/s + B/(s+1) + C/(s+2)
Using the Heaviside coverup method.
when s = 0, A= 1/ ( )(0 + 1)(0 + 2) = 1/2
when s = -1, B= 1/(-1)( )(-1 + 2) = -1
When s = -2, C= 1/(-2)(-2+1)( ) = 1/2
So (1/2)/s + (-1)/(s + 1) + (1/2)/(s + 2)
= (1/2)/(s - 0) + (-1)/(s + 1) + (1/2)/(s + 2)
= (1/2) e^(0*t) - e^(-t) + (1/2) e^(-2t)
= (1/2 - e^-(t) + (1/2) e^-2(t))
And u(c)(t)*f(t - c) = e^(-cs)*F(s) = e^(-10s)*F(s) = u(10)(t)*f(t - 10)
= u(10)(t)[ (1/2) - e^-(t - 10) + (1/2) e^ -2(t - 10)]