William C. answered 10/01/23
Experienced Tutor Specializing in Chemistry, Math, and Physics
(2x3 – 15x2 + 31x –18) ÷ (x – 1) = 2x2 – 13x +18 is found by long division.
2x2 – 13x +18 = 2x2 – 4x – 9x +18 = 2x(x – 2) – 9(x – 2) = (2x – 9)(x – 2)
So we can completely factor 2x3 – 15x2 + 31x –18:
2x3 – 15x2 + 31x –18 = (x – 1)(2x – 9)(x – 2)
2x3 – 15x2 + 31x –18 = (x – 1)(2x – 9)(x – 2) = 0 yields three zeroes, which arise from
x – 1 = 0, 2x – 9 = 0, and x – 2=0
Answer
The three zeroes of the polynomial are
x = 1
x = 9/2
x = 2