I rewrote your question as "If f(x) is a twice-differentiable function such that f(2) = 2 and dy/dx=6√(x2+3y2), then what is the value of d2y/dx2 squared at x = 2?"
Given that dy/dx = 6√(x2+3y2), we can determine d2y/dx2 by implicit differentiation:
d2y/dx2 = (x2+3y2)'[6/(2√(x2+3y2)]
d2y/dx2 = [2x+6y(dy/dx)][3/√(x2+3y2)]
d2y/dx2 = [2x+6y(6√(x2+3y2))][3/√(x2+3y2)] <-- Substitute dy/dx = 6√(x2+3y2)
d2y/dx2 = [2x+36y√(x2+3y2)][3/√(x2+3y2)]
Now, we can find the value of d2y/dx2 at (2,2):
d2y/dx2 = [2x+36y√(x2+3y2)][3/√(x2+3y2)]
d2y/dx2 = [2(2)+36(2)√(22+3(2)2)][3/√(22+3(2)2)]
d2y/dx2 = [4+72√(4+3(4))][3/√(4+3(4))]
d2y/dx2 = [4+72√(4+12)][3/√(4+12)]
d2y/dx2 = [4+72√16][3/√16]
d2y/dx2 = [4+72(4)](3/4)
d2y/dx2 = (4+288)(3/4)
d2y/dx2 = (292)(3/4)
d2y/dx2 = 219
Hope this helped!

AJ L.
05/07/23