
Juan M. answered 04/30/23
Professional Math and Physics Tutor
We can use the chain rule and the power rule to find the derivative of h(x):
h(x) = [(2x - 3) / x]^3
h'(x) = 3[(2x - 3) / x]^2 * [(d/dx)(2x - 3)/x]
To find (d/dx)(2x - 3)/x, we can use the quotient rule:
(d/dx)(2x - 3)/x = [(d/dx)(2x - 3)x - (d/dx)x(2x - 3)] / x^2
= [2x - 3 - 1(2x - 3)] / x^2
= (2 - 3/x) / x^2
Substituting this into the expression for h'(x), we get:
h'(x) = 3[(2x - 3) / x]^2 * (2 - 3/x) / x^2
= 3(2x - 3)^2(2 - 3/x) / x^5
Therefore, the derivative of h(x) is:
h'(x) = 3(2x - 3)^2(2 - 3/x) / x^5
Peter R.
04/29/23