Kiarash K. answered 10/04/24
Exp. Tutor | Algebra, Calculus, MS Suite, Excel VBA & SolidWorks
-To convert cartesian coordinates to cylindrical we have:
z = z
y = r.sin(θ)
x = r.cos(θ)
-To convert variable of integration from cartesian coordinates to cylindrical we have:
dzdydx = rdrdθdz
-To convert integral limits from cartesian coordinates to cylindrical we have:
z = [0,y] → z = [0,r.sin()]
y = [0,√(16-x2)], r.sin(θ) = √(16-r2cos2(θ)) → r = ± 4, -4 is not acceptable → r=[0, 4]
x = [0,4] → θ = [0,π]
∫-44 ∫0√16-x^2 ∫0y y dzdydx = ∫-44( ∫0√16-x^2 (∫0y y dz) dy) dx =
∫0π( ∫04 (∫0r.sin(θ) r.sin(θ) dz) r.dr) dθ = ∫0π( ∫04 [r.sin(θ).z]0r.sin(θ) r.dr) dθ =
∫0π( ∫04 r2.sin2(θ) .r.dr) dθ = ∫0π [r4.sin2(θ)/4]04 dθ =
∫0π 64.sin2(θ) dθ = ∫0π 32.(1-cos(2θ)) dθ] = 32.[(π-0.5.sin(2θ))]0π =
32.((π-0)-(0-0)) =
32π (Answer)