General equation for sine:
y = asin[k(x - b)] + h
Where:
Amplitude = |a| (always positive)
Period = 2π/k
Phase Shift = b (left if b < 0, right if b > 0)
Vertical Shift = h (down if h < 0, up if h > 0)
Note:
The sine graph starts at midline value at x = b
then goes up if a > 0, or goes down if a < 0
From the information given:
Max. Value = 67 @ 6 PM (18:00 hours)
Avg. Value (Midline) = 55 = h = vertical shift
Amplitude = |67 – 55| = 12 degrees
Period = 24 hrs.
Assuming a > 0, sine value starts at midline ¼ of the period prior to the maximum value
Sine wave starts at: 18 - 0.25(24) = 12 (Noon)
Horizontal shift: b = 12
Period = 2πpi/k = 24
k =2π/24
k= π/12
Equation is:
y = asin[k(x - b)] + h
f(x) = 12sin((π/12)(x – 12)) + 55
f(x) = 12sin(π(x – 12)/12) + 55
Find temperature at 4 AM (4:00)
f(4) = 12sin(π(-8)/12) + 55
f(4) = 12sin(-2π/3) + 55
f(4) = 12(-√3/2) + 55
f(4) = 55 - 6√3
f(4) = 44.61 ºF
Joseph S.
03/14/23
Bailey B.
Where did -8 come from? Trying to make sense of it.03/14/23