Ashley P.

asked • 05/19/22

3-D Geometry - Intersection of Lines

Question:


Find the equations of the line that intersects the lines


2x + y - 4 = 0 = y + 2x ; x + 3z = 4, 2x + 5z = 8


and passes through the point (2, -1, 1)


================================================


What I tried so far


As I understand, here, the set of lines 2x + y - 4 = 0 = y + 2x and x + 3z = 4, 2x + 5z = 8 are considered as the 2 separate set of lines, which we need to show that are being intersected.


So, the equation of a general line passing through 2x + y - 4 = 0 = y + 2x is given by 2x + y - 4 + k(y + 2x) =0 for some real number k

Also, equation of a general line passing through can be represented by, x + 3z - 4 + r(2x + 5z - 8) for some real number r.


I'm naming these equations as follows for ease of use.

2x + y - 4 + k(y + 2x) = 0 ----(1)

x + 3z - 4 + r(2x + 5z - 8) = 0 -------(2)


If these lines intersect at any point(s), for some value of k and r, (1) - (2) = 0 should exist.

That is, 2x + y - 4 + k(y + 2x) - [ x + 3z - 4 + r(2x + 5z - 8) ] = 0

====> (1 - 2r)x + y(1 + k)y + ( 2k - 3 - 5r)z - 8r = 0


If I'm to solve this, I can equate coefficients of x, y, z and constants each to 0.

Which gives, (1 - 2r) = 0 and -8r = 0


How can I proceed further with this?

Patrick F.

tutor
I'm confused by this statement: 2x + y - 4 = 0 = y + 2x . 2x + y - 4 = 0 and y + 2x = 0 are parallel lines, and so have no point of intersection, i.e., they are never equal.
Report

05/19/22

Ashley P.

I'm also getting the same issue. I thought I may have made a mistake.
Report

05/19/22

Ashley P.

Also, 2x + y - 4 = 0 = y + 2x represents equations of the 2 lines, 2x + y - 4 = 0 and y + 2x = 0
Report

05/19/22

Roger R.

tutor
If you're doing geometry in 3-space, you must read these equations as 2x +y +0z -4 = 0, a plane parallel to the z-axis. The two planes are parallel to each other (and the z-axis) and do not determine a line (of intersection). It must be a typo.
Report

05/19/22

Ashley P.

Apparently, the question I've got seems to be having a typo
Report

05/19/22

Mark M.

2x + y - 4 = 0 and 2x + y = 0 are two parallel lines in the x-y plane. x + 3z = 4 and 2x + 5z = 8 are two intersecting lines (4, 0) in the x-z plane. If the lines in x-y intersected a line could be determined from point of intersection to (4,0).
Report

05/19/22

Dayv O.

If the point given was (2.-1,0) then line y=(1/2)x-2 would intersect all four lines.
Report

05/19/22

1 Expert Answer

By:

Dayv O. answered • 05/20/22

Tutor
5 (55)

Caring Super Enthusiastic Knowledgeable Geometry Tutor

Still looking for help? Get the right answer, fast.

Ask a question for free

Get a free answer to a quick problem.
Most questions answered within 4 hours.

OR

Find an Online Tutor Now

Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.