Mesut P. answered 12/07/21
College Professor with more than 20 years teaching experience.
X ~ N(155,11.6)
a) P(X>170) = 1 - P(X<170)
Calculate the standard normal variant Z = (170 - 155)/11.6 = 1.2931
P(X<170) = P(Z < 1.2931) = Φ(Z=1.2931) = 0.9020
Hence:
P(X>170) = 1 - P(X<170) = 1 - 0.9020 = 0.098
b)𝑷(𝟏𝟓𝟐<𝑋<170) = P(X<170) - P(X<152)
Z1 = (170-155)/11.6 = 1.2931 --> Φ(Z=1.2931) = 0.9020
Similarly
Z2 = (152-155)/11.6 = -0.2586 --> Φ(Z=-0.2586) = 0.3980
Therefore 𝑷(𝟏𝟓𝟐<𝑋<170) = P(X<170) - P(X<152) = 0.9020 - 0.3980 = 0.504
Matlab codes
a) normcdf(170,155,11.6)
ans =
0.9020
b) normcdf(170,155,11.6)-normcdf(152,155,11.6)
ans =
0.5040