The function f(x) is an odd function: f(-x) = -f(x), f(0) = 0.
Find the first derivative:
f '(x) = 19/3 x16/3 - 130/3 x10/3 = 1/3 x10/3 (19x2 - 130)
f '(x) = 0 if x = 0 or if 19x2 - 130 = 0
x = ±√(130/19) ≈ ±2.6157
For the interval [0,3]:
(1) f '(x) < 0 if 0 < x < √(130/19)
f(x) is decreasing. Evaluate: f(√(130/19)) ≈ -203.69
(2) f '(x) > 0 if √(130/19) < x < 3
f(x) is increasing. Evaluate: f(3) ≈ -116.82
Because f(x) is an odd function, then on the interval [-3,0]:
(1) on the interval [-3, - √(130/19)] f(x) is increasing from 116.82 to 203.69
(2) on the interval [ - √(130/19), 0] f(x) is decreasing from 203.69 to 0.
Finally, on the interval [-3,3]
Minimum value ≈ -203.69 Maximum value ≈ 203.69
Exact value for the maximum is 10(130/19)13/6 - (130/19)19/6