Roger N. answered 11/11/21
. BE in Civil Engineering . Senior Structural/Civil Engineer
Solution:
f'(x) = ∫ f''(x) = ∫ (4-6x-60 x3) dx = 4x - 6(x2/2) -60( x4/4) + C1 = 4x - 3x2 - 15x4 + C1
but f'(0) = 6 , and 6 = 4(0) -3(0)2 -15 (0)4 + C1, C1 =6
f'(x) = 4x - 3x2- 15x4 + 6
f(x) = ∫ f'(x) = ∫( 4x - 3x2 - 15x4 + 6) dx = 4(x2/2) -3( x3/3) -15 (x5/5) + 6x + C2
f(x) = 2x2 - x3 - 3x5 + 6x + C2
but f(0) = 3 = 2(0)2 -(0)3 -3(0)5 + 6(0) + C2, C2 =3
f(x) = 2x2 - x3 - 3x5 + 6x + 3