
Osman A. answered 10/30/21
Professor of Engineering Mathematics – Trigonometry and Geometry
Prove: 8 sin3(x) cos(x) = 2 sin(2x) - sin(4x)
Prove by starting at:
Left Hand Side (8 sin3(x) cos(x)) and arrive to Right Hand Side (2 sin(2x) - sin(4x))
Known Trigonometry Facts: 2 sin(x) cos(x) = sin(2x) and 2 sin2(x) = 1 – cos 2x
Left Hand Side:
8 sin3(x) cos(x) = 2*2*2 sin(x) sin(x) sin(x) cos(x)
= 2 * (2 sin(x) cos(x)) * (2 sin2(x))
= 2 * (sin(2x)) * (2 sin2(x))
= 2 sin(2x) * (1 – cos 2x)
= 2 sin(2x) – 2 sin(2x) cos (2x)
= 2 sin(2x) – sin(2(2x))
= 2 sin(2x) – sin(4x)) <== Right Hand Side