sin6x+sin2x=0
sin(a+b)-sin(a-b) = 2sinasinb
let a=4x, b=2x
sin(4x+2x)+sin(4x-2x) = sin6x+sin2x = 2sin6xsin2x=0
sin2x = 2sinxcosx =0
sinx=0, x=pi
cosx=0, x=pi/2, 3pi/2
sin6x=0
sin6x=sin(4x+2x)= 2[sin((6x+2x)/2)(cos((6x-2x)/2)
= 2sin4xcos2x
2sin4x(2cos^2x-1)
2cos^2x =1
cos^2(x) =1/2
cosx =1/sqr2
x = 45, 315 degrees or pi/4, 7pi/4
sin4x =0
2sin2xcos2x = 0
sin2x=0
2x=0,pi,2pi
x =0,pi/2, pi
cos2x =0
2x =pi/2, 3pi/2, 5pi/2, 7pi/2
x = pi/4, 3pi/4, 5pi/4, 7pi/4
sin(4x-2x)+sin2x=0
sin(a-b) = sinacosb-sinbcosa, let a=4x, b=2x
sin4xcos2x-sin2xcos4x+sin2x=0
sin2a=2sinacosa, let a=2x
2sin2xcos2xcos2x-sin2xcos4x+sin2x=0
factor sin2x, cos4x = 2cos^2(x)-1
sin2x(2cos^2(2x) -2cos^2(x)+2)=0
sin2x=0
2x=0,pi
x=0, pi/2, pi, but 0 and 2pi are not in the interval (0,2pi) as parentheses do not include the end points
0 and 2pi would be in [0,2pi] as brackets include the endpoints
so x=just pi/2
check the possible answers
sin(6pi/2)+sin2pi/2)=sin3pi+sinpi
=0+0=0
x=pi/2 is a solution
sin6pi/4+sin2pi/4
=sin3pi/2+sinpi/2
=-1+1=0
x=pi/4 is another solution
sin6(3pi/4)+sin2(3pi/4)
=sin9pi/2+sin3pi/2
=sinpi/2+sin3pi/2
=1-1=0
x=3pi/4 is another solution
sin6(5pi/4)+sin2(p5pi/4)
=sin15pi/2+sin5pi/2
=sin3pi/2+sinpi/2
=-1+1=0
x=5pi/4 is another solution
sin6(7pi/4)+sin2(7pi/4)
=21pi/2+sin7pi/2
=sinpi/2+sin3pi/2
=1-1=0
x=7pi/4 is another solution
sin6(3pi/2)+sin2(3pi/2)
=sin9pi+sin3pi
=sinpi+sinpi
=0+0=0
x=3pi/2 is another solution
sin6(pi)+ sin2(pi)
=sin2pi+ sin2pi
=0+0=0
x=pi/4, pi/2, 3pi/4, pi, 3pi/2, 5pi/4, 7pi/4
x=pi/4 times 1,2,3,4,5,6 and 7
x=npi/4 where n= any integer between 1 and 7 to keep the solutions in the interval (0,2pi)
Robert J.
Your trig identity sin(a) + sin(b) = 2sin( (a+b)/2)*sin((a-b)/2) is incorrect.
Don't memerize the formula. Use reasoning to derive it.
11/09/12