APPROACH ONE ; SULUTION BY INSPECTION
[ y - 2/x +1 ] d x + [ 1 - 2/y + x ] d y = 0
y d x - 2 d x/ x + d x + d y - 2 d y/ y + x d y = 0
y d x + x d y - 2 d x/ x - 2 d y/ y + d x + d y = 0
d ( x y ) - d ( 2 ln x ) - d ( 2 ln y ) + d x + d y = 0
x y - 2 ln |x| - 2 ln |y| + x + y = ξ
x y - 2 ln | x y | + x + y = ξ
x y - ln ( x y)2 + x + y = ξ
APPROACH TWO : EXACT
[ y - 2/x +1 ] d x + [ 1 - 2/y + x ] d y = 0 ( Eq. 1 )
Let M ( x, y ) = y - 2/x +1 and N ( x, y) = 1 - 2/y + x
Then ∂ M / ∂ x = ∂ N / ∂ y = 1 Therefore the given differential equation is an exact one.
This means that ( Eq. 1 ) is the total differential of Ω ( x , y ) = k
Then Ω ( x , y ) = ∫ [ y - 2/x +1 ] d x + f ( y )
Ω ( x , y ) = x y - 2 ln |x |+ x + f ( y )
Then ∂Ω / ∂ y = x + f ' ( y ) = 1 - 2/y + x ⇒ f ' ( y ) = 1 - 2/y ⇒ f ( y ) = y - 2 ln | y | Finally
the solution to the given differential equation is x y - 2 ln |x |+ x + y - 2 ln | y | = ξ
x y - ln ( x y)2 + x + y = ξ