Christopher B. answered 09/17/21
Experienced Physics Teacher/Tutor with Engineering Background
- The direction the plane goes is the vector sum of the wind velocity and the plane's velocity.
- For the plane to go east, the vertical component of the wind's velocity must cancel out with the vertical component of the plane's velocity
- So vy for the plane = 40 km/hr north (the wind is heading south)
- The plane's velocity is the resultant of this vy and some unknown vx that must be pointed east to get to the destination.
- So the plane's bearing must be pointed northeast
- Draw a right triangle to represent these 3 vectors, with vy = 40 km/hr and the diagonal with a value of 90 km/hr.
- Use a2 + b2 = c2 to find the unknown side, vx
- Check: This value must be less than 90 km/hr
- Now we know all 3 sides of this triangle, so we can use trigonometry to find the angle we need for the bearing.
- Careful: Always reread the question to see how the teacher wants you to express the answer. This one asks for an angle in degrees clockwise from due north, so there will likely be an extra step, depending how you drew your vector triangle.