USING THE SHELL METHOD
V -=∫01 2π (2 −x ) ( x −x2 ) d x = π / 2
USING THE DISC METHOD.
We need to find the inner and outer radius of revolution in terms of y.
Let us solve the given equation x2 −x + y = 0
x = 1/2 ±√(1−4y) / 2
OUTER RADIUS = 2 − [ 1/2 −√(1−4y) / 2 ] = 3/2 + √(1−4y) / 2
INNER RADIUS = 2 − [ 1/2 +√(1−4y) / 2 ] = 3/2 − √(1−4y) / 2
Then volume = π ∫01/4{ [3/2 + √(1−4y) / 2]2 − [ 3/2 − √(1−4y) / 2]2 } d y = π/2