Jacob C. answered 07/08/21
Adaptive Math and Physics Tutor
Begin by multiplying both numerator and denominator by √(1 - cos(x)) such that
(1) √(1 - cos(x))/√(1 + cos(x)) = [√(1 - cos(x))/√(1 + cos(x))] * [√(1 - cos(x))/√(1 - cos(x))]
(2) √(1 - cos(x))/√(1 + cos(x)) = (1 - cos(x))/√(1 - cos2(x))
(3) √(1 - cos(x))/√(1 + cos(x)) = (1 - cos(x))/√(sin2(x))
(4) √(1 - cos(x))/√(1 + cos(x)) = (1 - cos(x))/sin(x)
(5) √(1 - cos(x))/√(1 + cos(x)) = 1/sin(x) - cos(x)/sin(x)
(6) √(1 - cos(x))/√(1 + cos(x)) = csc(x) - cot(x)
In step 2 -> 3 we use the identity 1 - cos2(x) = sin2(x) (Derivable from the fact that sin2(x) + cos2(x) = 1).
In step 3 -> 4 we simply change √(sin2(x)) to sin(x).
In step 4 -> 5 we distribute the 1/sin(x) to each term in the parentheses.
In step 5 -> 6 we use two more trig identities to simplify and yield the final result.