V=LWH = 3456
L=W
C=2LW*(2)+2H(L+W)(1)
substitute W for L and find C=4W2+4WH
Find dC/dW=8W+4WdH/dW+4H
Set dC/dW=0 finding dH/dW= -(2W+H)/W
Note: V=LWH=HW2=3456
Find dV/dW=2HW+w2dH/dW =0
solve for dH/dW=-2H/W3
substitue -2H/W3=-(2W+H)/W and H=3456/W2
solve to find W=12 and L=12 and H=24