Michael K. answered 03/25/21
PhD professional for Math, Physics, and CS Tutoring and Martial Arts
Using various trigonometric identities...
sin(A+B) = sin(A)cos(B) + sin(B)cos(A)
cos(A+B) = cos(A)cos(B) - sin(A)sin(B)
f(x) = 2*sin(4x)*cos(3x) = 2*sin(2x+2x)*cos(x+2x)
sin(4x) = sin(2x+2x) = 2*sin(2x)*cos(2x)
sin(2x) = 2*sin(x)*cos(x)
cos(2x) = cos2(x) - sin2(x)
Now substitute what we have...
f(x) = 2 * (2 * sin(2x)*cos(2x)) * (cos(x)*cos(2x) - sin(x)*sin(2x))
f(x) = 4*sin(2x)*cos(2x)*cos(x)*cos(2x) - 4*sin(2x)*cos(2x)*sin(x)*sin(2x)
f(x) = U + V
U = 4*sin(2x)*cos(2x)*cos(x)*cos(2x)
U = 8*sin(x)*cos2(x)*cos(2x)
U = 8*sin(x)*cos2(x)*[ cos2(x) - sin2(x) ]
U = 8*sin(x)*cos4(x) - 8*sin3(x)*cos2(x)
V = 4*sin(2x)*cos(2x)*sin(x)*sin(2x)
V = 8*sin2(x)*cos(x)*cos(2x)*sin(2x)
V = 8*sin2(x)*cos(x)*(2*sin(x)*cos(x))*cos(2x)
V = 16*sin3(x)*cos2(x)*cos(2x)
V = 16*sin3(x)*cos2(x)*[ cos2(x) - sin2(x) ]
V = 16*sin3(x)*cos4(x) - 16*sin5(x)*cos2(x)
f(x) = U + V --> 8*sin(x)*cos4(x) - 8*sin3(x)*cos2(x) + 16*sin3(x)*cos4(x) - 16*sin5(x)*cos2(x)
f(x) = 8*sin(x)*cos4(x) * [ 1 + 2sin2(x) ] - 8*sin3(x)*cos2(x) * [ 1 + 2sin2(x) ]
f(x) = [ 1 + 2sin2(x) ] * [ 8*sin(x)*cos4(x) - 8*sin3(x)*cos2(x) ]
f(x) = [ 1 + 2sin2(x) ] * [ 8*sin(x)*cos2(x) * (cos2(x) - sin2(x)) ]